
2025/2/3— Quantstamp Verified

Ai16ZH
This audit report was prepared by Quantstamp, the leader in blockchain security.

Total Issues 14 (8 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 5 (4 Resolved)

Low Risk Issues 3 (1 Resolved)

Informational Risk Issues 6 (3 Resolved)

Undetermined Risk Issues 0 (0 Resolved)

Unresolved Acknowledgedtheexistenceof therisk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

Executive Summary

Type

Auditors

Privacy-preserving DeFi platform

Fayçal Lalidji, Senior Security Engineer
Cristiano Silva, Research Engineer
Guillermo Escobero, Security Auditor

Timeline 2025-1-6 through 2025-2-3

EVM London

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Documentation Quality High

Test Quality Medium

Source Code

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Repository Commit

Core Contracts 9c20d23

Bridge Contracts Initial Reaudit
(4c9e45c)

https://github.com/silo-finance/silo-contracts/commit/9c20d2382c3bb32f10cec4687712fac352cf1828
https://github.com/silo-finance/silo-core-v1/commit/4c9e45cd4ae637bbbd2ded914c014da65343430b
https://github.com/silo-finance/silo-core-v1/commit/4c9e45cd4ae637bbbd2ded914c014da65343430b

Initial Audit:
Through reviewing the code, we found 19 potential issues with four medium severity issues, six low, and 9 informational. We recommend carefully re-considering the logic to ensure the
safety of the users.

First Reaudit: Most previously highlighted issues have been fixed, acknowledged, or mitigated except QSP-7, while new issues that must be fixed before deployment have been added to
the report (QSP-14 and 15).

Final Reaudit: All highlighted issues have been addressed.

Summary of Findings

ID Description Severity Status

QSP-1 Violating Checks Effects Interactions Pattern Medium Mitigated

QSP-2 Unsafe Cast Operation Medium Fixed

QSP-3 Adding New Bridge Asset May Fail Medium Fixed

QSP-4 Adding New Bridge Asset Do Not Sync the Bridge Pool Medium Fixed

QSP-5 Cannot Add Previously Removed Bridge Asset Low Fixed

QSP-6 Using call() Instead of transfer() For Sending Ether Low Acknowledged

QSP-7 Confusion In Return Value Low Acknowledged

QSP-8 Unlocked Pragma Informational Acknowledged

QSP-9 Unnecessary Public Visibility for State Variables Informational Fixed

QSP-10 Use of Hard-Coded Values Informational Fixed

QSP-11 Clone-and-Own Informational Acknowledged

QSP-12 Allowance Double-Spend Exploit Informational Mitigated

QSP-13 Ownership Can Be Renounced Informational Acknowledged

QSP-14 assertandgetdecimals(...)Does Not Throw in Case of a Contract that Is Not Erc20 Compliant Medium Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

• Transaction-ordering dependence

• Timestamp dependence

• Mishandled exceptions and call stack limits

• Unsafe external calls

• Integer overflow /underflow

• Number rounding errors

• Reentrancy and cross-function vulnerabilities

• Denial of service / logical oversights

• Access control

• Centralization of power

• Business logic contradicting the specification

• Code clones, functionality duplication

• Gas usage

• Arbitrary token minting

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and howmuch code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

function
BaseSilo._deposit(add
ress _asset, address
_from,
address _depositor,
uint256 _amount,
bool _collateralOnly

)
internal
nonReentrant
validateMaxDepositsAfter(_asset)

{
// MUST BE CALLED AS FIRST METHOD! we can allow for checks to be run before
_accrueInterest(_asset, block.timestamp);

if (!depositPossible(_asset, _depositor)) revert("DepositNotPossible()");

AssetStorage storage _state = state[_asset];

uint256 balanceBefore = ERC20(_asset).balanceOf(address(this));
ERC20(_asset).safeTransferFrom(_from, address(this), _amount);
uint256 balanceAfter = ERC20(_asset).balanceOf(address(this));

_amount = balanceAfter - balanceBefore;
uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDeposits;

if (_collateralOnly) {
uint256 share = _amount.toShare(totalDepositsCached,_state.collateralOnlyToken.totalSupply());
_state.collateralOnlyDeposits = totalDepositsCached + _amount;
_state.collateralOnlyToken.mint(_depositor, share);

} else {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralToken.totalSupply());
_state.totalDeposits = totalDepositsCached + _amount;
_state.collateralToken.mint(_depositor, share);

}

emit Deposit(_asset, _depositor, _amount, _collateralOnly);
}

function
_deposit(address
_asset, address
_from, address
_depositor, uint256
_amount, bool
_collateralOnly

)
internal
nonReentrant
validateMaxDepositsAfter(_asset)

{
// Checks section: preparing the environment for executing the function
_accrueInterest(_asset, block.timestamp);
if (!depositPossible(_asset, _depositor)) revert("DepositNotPossible()");
AssetStorage storage _state = state[_asset];
uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDeposits;

// Effects section: changing state variables
if (_collateralOnly) {

uint256 share = _amount.toShare(totalDepositsCached,_state.collateralOnlyToken.totalSupply());
_state.collateralOnlyDeposits = totalDepositsCached + _amount;
_state.collateralOnlyToken.mint(_depositor, share);

} else {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralToken.totalSupply());
_state.totalDeposits = totalDepositsCached + _amount;
_state.collateralToken.mint(_depositor, share);

}

// Interactions Section: making external call to other contracts
uint256 balanceBefore = ERC20(_asset).balanceOf(address(this));
ERC20(_asset).safeTransferFrom(_from, address(this), _amount);
uint256 balanceAfter = ERC20(_asset).balanceOf(address(this));

// Should we revert?
uint256 amount = balanceAfter - balanceBefore;
require(_amount==amount, "Incorrect amount: reverting the whole operation");

emit Deposit(_asset, _depositor, _amount, _collateralOnly);
}

Setup

Tool Setup:

• Slither v0.8.3

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Violating Checks Effects InteractionsPattern

Severity: Medium Risk

Status: Mitigated

File(s) affected: contracts/*

Description: The Checks-Effects-Interactions (CEI) pattern describes a way of organizing the statements in a function such that a contract’s state is left in a consistent state before calling out to
other contracts. This is done by classifying every statement as either a check, an effect (state change), or an interaction, and ensuring that they are strictly in this order. By placing effects
before interactions, we make sure that all state changes are done before any potential reentrancy point, leaving the state consistent. In fact, even when we use the modifier nonReentrant, we
must always use the Checks-Effects-Interaction pattern to reduce the attack surface for malicious contracts trying to hijack control flow after an external call. The CEI pattern is not adopted in
several functions of the application. As an example, let's take a look at the implementation of the function BaseSilo._deposit(...) presented below.

We notice that the interaction with the external contract happens in the middle of the function.
When following the CEI pattern, this line should be the last line of the function. Adapting the function to such a scenario is simple. Basically, we must postpone the external call and include a
require such as the transferred amount (new variable) is equal to the input parameter _amount. The code will look similar to the one below.

The same logic must be applied to each and every function making external calls:

• BaseSilo._withdraw(...), execute external function calls when runing BaseSilo._withdrawAsset(...) before setting the final contract state.We recommend
to execute the transfer calls in a third function after setting State.collateralOnlyDeposits or State.totalDeposits.

• _repay execute a transfer before setting the final contract state.

• _repaymust include a non-reentrant modifier for safety.

All the other contracts that present calls to external contracts must be adapted to the CEI pattern, even those having the nonReentrantmodifier.

Recommendation: Review all the contracts in order to assure that all the functions making external calls are following the Checks-Effects-Interaction Pattern, even functions having the
nonReentrant modifier must follow the CEI pattern. Otherwise the application will be under risk.

Update: QSP-1 is partially fixed, BaseSilo._repay(...) still does not respect the CEI pattern.

https://github.com/crytic/slither

QSP-2 Unsafe Cast Operation

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/lib/ModelStats.sol

Description: ModelStats.calculateUtilization(...)should use SafeCastwhen converting _dp touint256, or if_dp is an always positive value change its declaration touint256.
Please note that using solidity 0.8.0 or higher does not prevent incorrect cast operations.

QSP-3 Adding New Bridge Asset May Fail

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: If a new bridge asset is meant to be added to the pool and if the bridge asset is already set within a silo the SiloRepository.bridgePool is set then the admin won't be able to
add that asset as a bridge asset. An attacker can use this to prevent the admins from adding new bridge assets purposefully since adding new silo is allowed to anyone.

Recommendation: This behavior should be either clearly documented or fixed.

Update: Fixed by adding extra comments in https://github.com/silo-finance/silo-contracts/pull/322.

QSP-4 Adding New Bridge Asset Do Not Sync the Bridge Pool

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: in SiloRepository adding new bridge asset won't sync the actual bridge pool since the external call is set before adding the asset to the bridge list.

Recommendation: Sync the bridge assets after adding the new asset to the list.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/316.

QSP-5 Cannot Add Previously Removed Bridge Asset

Severity: Low Risk

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: Adding back a bridge asset that was removed using SiloRepository.addBridgeAsset(...) will not allow its reactivation in the Silo contract since there is a check in
_initAssetsTokens(...) that prevent that.

Recommendation: Add the missing else branch in the if condition of L229, resetting the asset status to active.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/224.

QSP-6 Using call() Instead of transfer() For Sending Ether

Severity: Low Risk

Status: Acknowledged

File(s) affected: contracts/SiloRouter.sol

Description: The functions below are using call() to transfer Ether instead of the function transfer(). Since call() forwards all the gas, it can be exploited in reentrancy attacks.

• SiloRouter._sendAsset(...)

• SiloRouter.execute(...)

Update: "We won’t do transfer() it will fail for some smart contracts".

QSP-7 Confusion In Return Value

Severity: Low Risk

Status: Acknowledged

File(s) affected: contracts/lib/Ping.sol

Description: ERC20Standard decimals() can return 0 as a decimal value. Therefore, returning 0 in case of an unsuccessful transaction or an invalid address can lead to confusion or to a
possible issue when usingPing.decimals(...).

Recommendation: Change the return value in case of a failed transaction or invalid address.

Update: Acknowledged in commit 4be2bddae241fccf3b45d69b2d47f7f4c40eaf52

QSP-8 Unlocked Pragma

https://github.com/silo-finance/silo-core-v1/compare/4c9e45cd4ae637bbbd2ded914c014da65343430b%E2%80%A64be2bddae241fccf3b45d69b2d47f7f4c40eaf52#diff-c3a9cc00cabce9d4bf9bae9cb69332d0ad173090cf59f380cabf34e3439ec21bR16-R17

function depositAPY(ISilo _silo, address _asset) external view returns (uint256)
{ IPriceProvidersRepository priceProviderRepo =
siloRepository.priceProvidersRepository(); uint256 assetPrice =
priceProviderRepo.getPrice(_asset);
uint256 assetDecimals = ERC20(_asset).decimals();

// amount of debt generated per year in asset decimals
uint256 generatedDebtAmount = totalBorrowAmountWithInterest(_silo, _asset) * borrowAPY(_silo, _asset) / 1e18;
// generated debt value in ETH per year in 18 decimals
uint256 generatedDebtValue = generatedDebtAmount * assetPrice / 10 ** assetDecimals;
// value of deposits in ETH in 18 decimals
uint256 totalDepositsValue = totalDepositsWithInterest(_silo, _asset) * assetPrice / 10 ** assetDecimals;

return generatedDebtValue * 1e18 / totalDepositsValue;
}

Severity: Informational

Status: Acknowledged

Related Issue(s): SWC-103

Description: Every Solidity file specifies in the header a version number of the formatpragma solidity (^)0.*.*. The caret (^) before the version number implies an unlocked pragma,
meaning that the compiler will use the specified version and above, hence the term "unlocked".
The project is using different versions of solidity and pragma directives: 0.7.6, >=0.4.0, >=0.5.0, >=0.5.0<0.8.0, >=0.6.0<0.8.0, >=0.6.0<0.9.0, >=0.7.0, >=0.7.0<0.9.0,
^0.7.0, 0.8.7, >=0.7.5, ^0.8.0.

Recommendation: For consistency and to prevent unexpected behavior in the future, we recommend removing the caret to lock the file onto a specific Solidity version.

QSP-9 Unnecessary Public Visibility for State Variables

Severity: Informational

Status: Fixed

File(s) affected: contracts/*

Description: Several contracts present state variables with public visibility. A contract variable marked public will generate a getter function to read its value, and there’s no way to apply a
modifier to that function. This opens up the possibility for exploitation, since it can result in other contracts observing inconsistent state due to broken invariants.

Recommendation: Turning the visibility of the state variables to private will reduce contract size and reduce the risk of possible exploits.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/321.

QSP-10 Use of Hard-Coded Values

Severity: Informational

Status: Fixed

File(s) affected: contracts/SiloLens.sol

Description: The function SiloLens.depositAPY(...) has the hard-coded value 1e18, which is not a good programming practice. The function is listed below.

Recommendation: Use the proper constant to represent the value. In case the values are related, use the same constant.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/237.

QSP-11 Clone-and-Own

Severity: Informational

Status: Acknowledged

File(s) affected: contracts/governance/TreasuryVester.sol, contracts/lib/PRBMathCommon.sol, contracts/lib/PRBMathSD59x18.sol

Description: The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the
amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or
unintentionally modified upstream libraries.

Recommendation: Rather than the clone-and-own approach, a good industry practice is to use a package manager (e.g., npm) for handling library dependencies. This eliminates the clone-
and-own risks yet allows for following best practices, such as, using libraries. If the file is cloned anyway, a comment including the repository, commit hash of the version cloned, and the
summary of modifications (if any) should be added. This helps to improve traceability of the file.

QSP-12 Allowance Double-Spend Exploit

Severity: Informational

Status: Mitigated

File(s) affected: contracts/governance/SiloGovernanceToken.sol, contracts/utils/ShareToken.sol

Description: As they presently are constructed, SiloGovernanceToken and ShareToken tokens are vulnerable to the allowance allowance double-spend exploit, as with other ERC20 tokens.

Exploit Scenario: 1. Alice allows Bob to transfer N amount of Alice's tokens (N>0) by calling the approve() method on Token smart contract (passing Bob's address and N as method
arguments)

1. After some time, Alice decides to change from N to M (M>0) the number of Alice's tokens Bob is allowed to transfer, so she calls the approve()method again, this time
passing Bob's address and M as method arguments

2. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the transferFrom()method to transfer N Alice's tokens
somewhere

3. If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer N Alice's tokens and will gain an ability to transfer another M tokens

4. Before Alice notices any irregularities, Bob calls transferFrom()method again, this time to transfer M Alice's tokens.

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://github.com/comitylabs/openzeppelin-contracts/blob/6bd6b76d1156e20e45d1016f355d154141c7e5b9/contracts/token/ERC20/IERC20.sol#L43

Recommendation: Theexploit (as described above) ismitigated throughuseof functions that increase/decrease the allowance relative to its current value, such asincreaseAllowance()and
decreaseAllowance(). Furthermore, we recommend that developers of applications dependent on approve() /transferFrom() should keep inmind that they have to set allowance to 0
first and verify if it was used before setting the new value.

QSP-13 Ownership Can Be Renounced

Severity: Informational

Status: Acknowledged

File(s) affected: contracts/InterestRateModel.sol, contracts/PriceProvidersRepository.sol, contracts/SiloRepository.sol,
contracts/governance/SiloGovernanceToken.sol, contracts/governance/TreasuryVester.sol, contracts/liquidation/LiquidationHelper.sol,
contracts/priceProviders/balancerV2/BalancerV2PriceProvider.sol, contracts/priceProviders/uniswapV3/UniswapV3PriceProvider.sol,
contracts/utils/GuardedLaunch.sol

Description: If the owner renounces their ownership, all ownable contracts will be left without an owner. Consequently, any function guarded by the onlyOwner modifier will no longer be able
to be executed

Recommendation: Double check if this is the intended behavior.

QSP-14 assertandgetdecimals(...) Does Not Throw in Case of a Contract that Is Not Erc20 Compliant

Severity: MediumRisk

Status: Acknowledged

File(s) affected: contracts/lib/TokenHelper.sol

Description: TokenHelper.assertandgetdecimals(...)does not revert in case of a contract that is not ERC20 compliant. Please note that the function has been used on multiple
occasions to check if an address is a valid ERC20 contract.

Recommendation:When the call to IERC20Metadata.decimals fails, clearly revert with the correct message otherwise the return value cannot be distinguished between a contract that has
zero decimals and a failing call.

Update: Acknowledged in commit 4be2bddae241fccf3b45d69b2d47f7f4c40eaf52

Automated Analyses

Slither

Slither did not return any significant result.

Adherence to Best Practices

1. the folllwing assignement uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDeposits in
BaseSilo.deposit(...) can be put inside the if/else condition to save gas.

2. SiloSnapshotWrapper implementation inherits from ERC20 when it is not needed. if the contract needs to act as a wrapper, only the required functions can be
implemented.

3. LiquidationHelper.sol:1.1.TheIWrappedNativeToken interface isdeclared.However, this interfacealreadyexists in ./contracts/interfaces/IWrappedNativeToken.sol.
Consider importing it from that file.
1.2. L158: change the require revert message to one more descriptive one.
1.3. checkDebt(...) should check input array lengths (similar approach as done in checkSolvency(...))

4. In Solvency.sol some functions are not called outside the library (e.g. getBorrowAmounts(...), convertAmountsToValues(...) or
getUserCollateralValues(...)). Consider labeling them as private to improve encapsulation.

5. In SiloLens.sol (L298 and L304), and in SiloRepository.sol (L76) a non-documented constant is used (1e18). It seems to be related to
Solvency._PRECISION_DECIMALS constant. Use it or declare a new named constant in the contract.

6. Gas optimizations: 1.1. Declare array length used in loop condition as variable before for loops. 1.2. In SiloSnapshotWrapper.sol consider declaring siloToken variable
as immutable.

7. The following functions are not called internally. Consider labeling them as external to save gas:

1. TwoStepOwnable.renounceOwnership()

2. TwoStepOwnable.transferOwnership(address)

3. TwoStepOwnable.transferPendingOwnership(address)

4. TwoStepOwnable.acceptOwnership()

5. UniswapV3PriceProvider.getPrice(address)

6. PriceProvidersRepository.getPrice(address)

7. Silo.accrueInterest(address)

8. UniswapV3Swap.pathToBytes(address[],uint24[])

9. ERC20R.decreaseReceiveAllowance(address,uint256)

10. ERC20R.increaseReceiveAllowance(address,uint256)

Test Results

Test Suite Results

https://github.com/silo-finance/silo-core-v1/compare/4c9e45cd4ae637bbbd2ded914c014da65343430b%E2%80%A64be2bddae241fccf3b45d69b2d47f7f4c40eaf52#diff-c3a9cc00cabce9d4bf9bae9cb69332d0ad173090cf59f380cabf34e3439ec21bR16-R17

Run yarn test
yarn run v1.22.18
warning package.json: License should be a valid SPDX license expression
$ npx hardhat test
hardhat forking OFF
No need to generate any newer typings.

SiloGovernanceToken
when deployed
✓ deployer has 1e9 tokens

-------------------- evm_revert: 0x1
SiloGovernor
✓ setup (83ms)
testing execution flow
✓ propose() (44ms)
proposed
✓ castVote() (38ms)
voted
✓ queue() & execute() (491ms)

-------------------- evm_revert: 0x4
InterestRateModel
✓ #DP
✓ getConfig() (42ms)
✓ setConfig() (43ms)
calculateCurrentInterestRate()
✓ reverts if timestamps are invalid

gas used: 28325
✓ estimateGas() (189ms)

calculateCompoundInterestRate()
✓ reverts if timestamps are invalid

gas used: 33901
✓ estimateGas()

TokenHelper library
✓ expect to support standard string ERC20.symbol() Token ABC (42ms)
✓ expect to support bytes32 ERC20.symbol() 0x546f6b656e2041424300 (40ms)
✓ expect return question mark on error (94ms)

LiquidationHelper
- #executeLiquidation
- #checkSolvency
- #checkDebt
- #findPriceProvider
when deployed

- #siloRepository
- #lens
- #quoteToken
- #priceProvidersWithSwapOption
- #priceProvidersWithSwapOption
- #swappers

#siloLiquidationCallback
- throws when called not by silo
- throws when not able to repay all debt eg in case when swap was not enough
- throws when liquidation notprofitable
when #siloLiquidationCallback executed

- expect valid values in LiquidationBalance event
- #earnings

BalancerV2PriceProvider
✓ #changeSecondsAgo
✓ #getPoolQuoteLiquidity (43ms)
when deployed
✓ #vault
✓ #secondsAgo is 0
✓ #periodForAvgPrice

#setupAsset
✓ throws on invalid verification (99ms)
✓ #assetSupported returns FALSE before initialization
✓ throws when can`t get price for asset (101ms)
when pool is setup
✓ #assetSupported returns TRUE
✓ expect to save state for asset

#changePeriodForAvgPrice
✓ throws when period 0
✓ expect to change period

#changeSettings
✓ throws when period 0
✓ expect to change period and secs ago

#priceBufferReady
✓ returns FALSE when pool is NOT initialized with buffer
✓ returns TRUE when pool is initialized with buffer (193ms)

#getPrice (TWAP calculations)
✓ reverts when asset not initialised
✓ reverts when pool does NOT have full buffer for TWAP calculations (279ms)
✓ return price when pool does have full buffer for TWAP calculations (204ms)
must work for asset with any decimals
✓ returns the price for 18 decimals token (113ms)
✓ returns the price for asset with different decimals eg 6 (107ms)
✓ returns ONE for quote token

#verifyPool
✓ throws on empty asset
✓ throws on invalid pool id (125ms)
✓ throws when invalid pool for asset (168ms)
✓ throws when invalid pool for quote token (68ms)
✓ throws when pool has no quote balance - case 1 [asset, quote] (66ms)
✓ throws when pool has no quote balance - case 2 [quote, asset] (157ms)
✓ throws when pool has no quote balance (150ms)
✓ returns tokens list in original order [asset ,quote] (136ms)
✓ returns tokens list in original order [quote, asset] (72ms)

UniswapV3PriceProvider
when deployed
✓ #PriceCalculationData
✓ #uniswapV3Factory
✓ does NOT have pool for asset

#setupAsset
✓ #assetSupported returns FALSE
✓ throws when verification failed (99ms)
✓ throws when pool is not ready to provide prices (240ms)
when asset initialized
✓ #assetSupported returns TRUE
✓ expect to have pool for asset

#changePeriodForAvgPrice
✓ throws on period 0
✓ throws on period greater than or equal timestamp
✓ throws when called NOT by manager
when period set
✓ expect have new period

#changeBlockTime
✓ throws on blockTime 0
✓ throws on blockTime >= 60
✓ throws when called NOT by manager
when period set
✓ expect have new period

#adjustOracleCardinality
✓ expect NOT to increase when has required cardinality (39ms)
✓ expect to increase when has required cardinality (111ms)

#hasEnoughObservations
✓ returns TRUE when oldest timestamp is less that required period (146ms)
✓ returns FALSE when oldest timestamp is greater that required period (64ms)

#verifyPool
✓ throws on empty asset address
✓ throws on empty pool address
✓ throws when pool is invalid pool for asset (101ms)
✓ throws when pool for asset is empty address (126ms)
✓ throws when no liquidity (132ms)
✓ returns TRUE when all good (81ms)

#getPrice
✓ throws when asset not initialized
must work for asset with any decimals
✓ returns the price for 18 decimals token (218ms)
✓ returns the price for asset with different decimals eg 6 (201ms)
✓ returns ONE for quote token

PriceProvidersRepository
✓ deployment fails when quote token is not 18 decimals
when deployed
✓ #siloRepository
✓ #quoteToken
✓ #providerList returns empty array

#Manageable
✓ expect manager to be owner by default
✓ #changeManager

#addPriceProvider
✓ throws when called NOT by owner
✓ throws when invalid provider.quoteToken (38ms)
✓ emits event NewPriceProvider (44ms)
when added
✓ throws when try to add again
✓ expect to be registered
✓ #providersCount to be 1
✓ #providerList to return providers

#removePriceProvider
✓ throws when called NOT by owner
✓ throws when not exists
when exists
✓ emits event PriceProviderRemoved
when removed
✓ expect to NOT be registered
✓ #providersCount to be 1

#setPriceProviderForAsset
✓ throws when called NOT by manager

✓ throws when provider not registered
when provider registered
✓ throws when asset not supported
✓ #providersReadyForAsset to be FALSE
✓ emits event PriceProviderForAsset (39ms)
when provider set for asset
✓ expect to be provider for asset
✓ #providersReadyForAsset to be TRUE

#getPrice
✓ returns ONE for quote token
✓ throws when provider reverts (87ms)
✓ returns price (97ms)

Silo unit tests
-------------------- evm_revert: 0x12bb
✓ emits AssetStatusUpdate when syncing removed bridge assets (125ms)

-------------------- evm_revert: 0x12bc
✓ expect share tokens are not zero addresses
#getAssets

-------------------- evm_revert: 0x12c1
✓ returns all synced assets
when new bridge asset is added

-------------------- evm_revert: 0x12c2
✓ does not return unsynced bridge asset
when Silo is synced

-------------------- evm_revert: 0x12c3
✓ returns all assets after sync

when bridge asset is removed
-------------------- evm_revert: 0x12c8

✓ returns all assets *before* sync, including removed asset
when Silo is synced

-------------------- evm_revert: 0x12cd
✓ returns all assets *after* sync, including removed asset
when removed asset is added back

-------------------- evm_revert: 0x12df
✓ returns all assets *before* sync, including removed-added asset
when Silo is synced

-------------------- evm_revert: 0x12f1
✓ returns all assets after sync, including removed-added asset

bridge assets management in the SiloRepository affects silobehavior
#deposit and #borrow are disabled for removed bridge asset

-------------------- evm_revert: 0x1310
✓ #deposit should fail for the removed bridge asset

-------------------- evm_revert: 0x132f
✓ #borrow should fail for the removed bridge asset
#deposit and #borrow are available after added removed bridge asset

-------------------- evm_revert: 0x134b
✓ #deposit should work for the bridge asset added after removal (46ms)

-------------------- evm_revert: 0x1367
✓ #borrow should work for the bridge asset added after removal (94ms)

#deposit
[#0] allows to deposit all possible assets

-------------------- evm_revert: 0x1396
✓ [#0] throws on empty asset

-------------------- evm_revert: 0x13c5
✓ [#0] emits event (148ms)

-------------------- evm_revert: 0x13c6
✓ [#0] emits event for collateral only (140ms)

-------------------- evm_revert: 0x13cf
✓ [#0] #getLTV is zero when nothing borrowed
test collateralOnly option
[#0] when userA do collateralOnly deposit(collateralAsset)

-------------------- evm_revert: 0x13d8
✓ liquidity does not change

-------------------- evm_revert: 0x13d9
✓ AssetStorage.collateralOnlyDeposits should change

-------------------- evm_revert: 0x13e2
✓ AssetStorage.totalDeposits should not change
when someone borrows collateral
when accrueInterest

-------------------- evm_revert: 0x13eb
✓ there should be interest, but not for user A

-------------------- evm_revert: 0x13f4
✓ user A withdraws collateralOnly without any interest earned (63ms)

#borrow
-------------------- evm_revert: 0x141d

✓ throws when trying to borrow() collateralOnly deposit
-------------------- evm_revert: 0x1446

✓ should borrow() using collateralOnly deposit as collateral (354ms)
[#0] when asset deposited by userA

-------------------- evm_revert: 0x1457
✓ throws when userA wants to borrow collateral asset (279ms)

-------------------- evm_revert: 0x147a
✓ userB don't have asset and collateral token

-------------------- evm_revert: 0x1495
✓ #getLTV is still zero because nothing borrowed

-------------------- evm_revert: 0x149e
✓ expect to have valid total deposits

-------------------- evm_revert: 0x14a7
✓ #liquidity is equal to deposited value

-------------------- evm_revert: 0x14b0
✓ balances are correct after deposit

-------------------- evm_revert: 0x14b9
✓ userA can deposit again (163ms)

-------------------- evm_revert: 0x14c2
✓ userB can also deposit (164ms)
[#0] #withdrawFor

-------------------- evm_revert: 0x14d3
✓ throws when done NOT by router
when withdrawFor executed

-------------------- evm_revert: 0x14e4
✓ depositor has no deposit

-------------------- evm_revert: 0x14ef
✓ receiver got deposit

[#0] #withdraw
-------------------- evm_revert: 0x1504

✓ [#0] throws when withdrawing more collateralOnly then deposited into the silo (165ms)
-------------------- evm_revert: 0x1519

✓ [#0] throws when withdrawing more collateral then deposited into the silo (166ms)
-------------------- evm_revert: 0x152e

✓ [#0] throws when withdraw collateral but such deposits NOT exist (186ms)
-------------------- evm_revert: 0x1543

✓ [#0] throws when withdraw collateralOnly but such deposits NOT exist (165ms)
-------------------- evm_revert: 0x1558

✓ [#0] expect to withdraw MAX (195ms)
[#0] when withdrawn

-------------------- evm_revert: 0x156d
✓ tokens balances are correct

#withdrawFor
-------------------- evm_revert: 0x1582

✓ throws when withdrawFor(userA) is done NOT by router
-------------------- evm_revert: 0x158b

✓ expect to emit event (221ms)
when withdrawn

-------------------- evm_revert: 0x1596
✓ expect depositor to have no balance

-------------------- evm_revert: 0x15ab
✓ expect receiver got deposit

#calculateCollateralValue
-------------------- evm_revert: 0x15c0

✓ should be equal original amount when no interests
-------------------- evm_revert: 0x15d5

✓ value should be greater than original amount when interests are included (50ms)
-------------------- evm_revert: 0x15de

✓ collateral only should be included into collateral value (187ms)
-------------------- evm_revert: 0x15e9

✓ should depend on assetPrice (including collateral only) (288ms)
collateral token integration tests

-------------------- evm_revert: 0x15fa
✓ should #mint collateral tokens to userA

-------------------- evm_revert: 0x1618
✓ should #burn collateral tokens on withdraw (230ms)
#transfer

-------------------- evm_revert: 0x1621
✓ userA can #transfer collateral tokens (122ms)
when userB deposits other asset

-------------------- evm_revert: 0x1636
✓ throws when userA transfers collateral to userB who has debt in that asset (213ms)

-------------------- evm_revert: 0x1641
✓ throws when userA becomes insolvent after transfer (236ms)

[#1] allows to deposit all possible assets
-------------------- evm_revert: 0x165e

✓ [#1] throws on empty asset
-------------------- evm_revert: 0x167b

✓ [#1] emits event (138ms)
-------------------- evm_revert: 0x167c

✓ [#1] emits event for collateral only (131ms)
-------------------- evm_revert: 0x1685

✓ [#1] #getLTV is zero when nothing borrowed
test collateralOnly option
[#1] when userA do collateralOnly deposit(collateralAsset)

-------------------- evm_revert: 0x168e
✓ liquidity does not change

-------------------- evm_revert: 0x168f
✓ AssetStorage.collateralOnlyDeposits should change

-------------------- evm_revert: 0x1698
✓ AssetStorage.totalDeposits should not change

when someone borrows collateral
when accrueInterest

-------------------- evm_revert: 0x16a1
✓ there should be interest, but not for user A

-------------------- evm_revert: 0x16aa
✓ user A withdraws collateralOnly without any interest earned (60ms)

#borrow
-------------------- evm_revert: 0x16d3

✓ throws when trying to borrow() collateralOnly deposit
-------------------- evm_revert: 0x16fc

✓ should borrow() using collateralOnly deposit as collateral (374ms)
[#1] when asset deposited by userA

-------------------- evm_revert: 0x170d
✓ throws when userA wants to borrow collateral asset (286ms)

-------------------- evm_revert: 0x1730
✓ userB don't have asset and collateral token

-------------------- evm_revert: 0x174b
✓ #getLTV is still zero because nothing borrowed

-------------------- evm_revert: 0x1754
✓ expect to have valid total deposits

-------------------- evm_revert: 0x175d
✓ #liquidity is equal to deposited value

-------------------- evm_revert: 0x1766
✓ balances are correct after deposit

-------------------- evm_revert: 0x176f
✓ userA can deposit again (163ms)

-------------------- evm_revert: 0x1778
✓ userB can also deposit (175ms)
[#1] #withdrawFor

-------------------- evm_revert: 0x1789
✓ throws when done NOT by router
when withdrawFor executed

-------------------- evm_revert: 0x179a
✓ depositor has no deposit

-------------------- evm_revert: 0x17a5
✓ receiver got deposit

[#1] #withdraw
-------------------- evm_revert: 0x17ba

✓ [#1] throws when withdrawing more collateralOnly then deposited into the silo (171ms)
-------------------- evm_revert: 0x17cf

✓ [#1] throws when withdrawing more collateral then deposited into the silo (176ms)
-------------------- evm_revert: 0x17e4

✓ [#1] throws when withdraw collateral but such deposits NOT exist (179ms)
-------------------- evm_revert: 0x17f9

✓ [#1] throws when withdraw collateralOnly but such deposits NOT exist (174ms)
-------------------- evm_revert: 0x180e

✓ [#1] expect to withdraw MAX (195ms)
[#1] when withdrawn

-------------------- evm_revert: 0x1823
✓ tokens balances are correct

#withdrawFor
-------------------- evm_revert: 0x1838

✓ throws when withdrawFor(userA) is done NOT by router
-------------------- evm_revert: 0x1841

✓ expect to emit event (197ms)
when withdrawn

-------------------- evm_revert: 0x184c
✓ expect depositor to have no balance

-------------------- evm_revert: 0x1861
✓ expect receiver got deposit

#calculateCollateralValue
-------------------- evm_revert: 0x1876

✓ should be equal original amount when no interests
-------------------- evm_revert: 0x188b

✓ value should be greater than original amount when interests are included (46ms)
-------------------- evm_revert: 0x1894

✓ collateral only should be included into collateral value (159ms)
-------------------- evm_revert: 0x189f

✓ should depend on assetPrice (including collateral only) (272ms)
collateral token integration tests

-------------------- evm_revert: 0x18b0
✓ should #mint collateral tokens to userA

-------------------- evm_revert: 0x18ce
✓ should #burn collateral tokens on withdraw (205ms)
#transfer

-------------------- evm_revert: 0x18d7
✓ userA can #transfer collateral tokens (129ms)
when userB deposits other asset

-------------------- evm_revert: 0x18ec
✓ throws when userA transfers collateral to userB who has debt in that asset (206ms)

-------------------- evm_revert: 0x18f7
✓ throws when userA becomes insolvent after transfer (233ms)

when guarded launch is ON
throws on limitedMaxLiquidity for every asset

-------------------- evm_revert: 0x1914
✓ [0] expect to fail for asset (188ms)

-------------------- evm_revert: 0x1931
✓ [0] expect to fail for asset (collateralOnly) (177ms)

-------------------- evm_revert: 0x193c
✓ [1] expect to fail for asset (191ms)

-------------------- evm_revert: 0x1947
✓ [1] expect to fail for asset (collateralOnly) (187ms)

#deposit with limitedMaxLiquidity in 2 steps should fail
fails for every asset

-------------------- evm_revert: 0x1952
✓ [0] expect to fail for asset (227ms)

-------------------- evm_revert: 0x195d
✓ [1] expect to fail for asset (231ms)

depositFor(userB)
depositFor(userB) all possible assets

-------------------- evm_revert: 0x1968
✓ [0] router can depositFor(userB) asset (177ms)

-------------------- evm_revert: 0x1973
✓ [0] anyone can depositFor(userB) asset (162ms)

-------------------- evm_revert: 0x197e
✓ [1] router can depositFor(userB) asset (198ms)

-------------------- evm_revert: 0x1987
✓ [1] anyone can depositFor(userB) asset (169ms)

when userA made two types of collateral deposits
-------------------- evm_revert: 0x1992

✓ userA has two types of deposits
when userA (with two types of deposit) borrows
#flashLiquidate when userA is solvent

-------------------- evm_revert: 0x199b
✓ expect to NOT liquidate(userA) with two types of deposits as collateral (87ms)

#flashLiquidate when userA became insolvent
-------------------- evm_revert: 0x19ac

✓ will update the silo state during liquidation (203ms)
-------------------- evm_revert: 0x19cf

✓ fail to liquidate(userA) when repay amount not enough (178ms)
when userA liquidated

-------------------- evm_revert: 0x19f6
✓ expect tx to emit Liquidate events

-------------------- evm_revert: 0x1a1d
✓ expect tx to emit Transfer events

-------------------- evm_revert: 0x1a44
✓ expect to have no debt (100ms)

-------------------- evm_revert: 0x1a6b
✓ expect to decrease total deposit

-------------------- evm_revert: 0x1a92
✓ expect to send both types of deposits to liquidator on liquidate(userA)

-------------------- evm_revert: 0x1ab9
✓ expect view to returns valid assets

-------------------- evm_revert: 0x1ae0
✓ expect view to returns valid collaterals data

-------------------- evm_revert: 0x1b07
✓ expect view to returns valid amounts to repay

#borrow
[0] with all assets

-------------------- evm_revert: 0x1b2e
✓ [0] expect to throw when nothing to borrow (175ms)

-------------------- evm_revert: 0x1b55
✓ throws when userB wants to borrow more that silo has (285ms)

-------------------- evm_revert: 0x1b60
✓ expect to emit event (482ms)
[0] when user B borrow

-------------------- evm_revert: 0x1b71
✓ expect valid state of tokens (104ms)

[1] with all assets
-------------------- evm_revert: 0x1b8c

✓ [1] expect to throw when nothing to borrow (181ms)
-------------------- evm_revert: 0x1ba7

✓ throws when userB wants to borrow more that silo has (294ms)
-------------------- evm_revert: 0x1bb2

✓ expect to emit event (462ms)
[1] when user B borrow

-------------------- evm_revert: 0x1bc3
✓ expect valid state of tokens (105ms)

#deposit and #borrow for every pair of assets
[0] when user A deposits currentAsset

[0] when user B deposit other asset as collateral
-------------------- evm_revert: 0x1bde

✓ silo shares are right before borrow
-------------------- evm_revert: 0x1bf9

✓ userB has right LTV after #borrow (329ms)
test maximumLTV

when there is enough deposit
-------------------- evm_revert: 0x1c0a

✓ throws when userB wants to borrow more that 100% (maximumLTV) (366ms)
-------------------- evm_revert: 0x1c27

✓ userB can borrow maximumLTV and stay solvent (125ms)
borrowFor(userA)

-------------------- evm_revert: 0x1c5a
✓ router can borrowFor(userB) (265ms)

-------------------- evm_revert: 0x1c7b
✓ throws when borrowFor() is done NOT by router

when userB borrows currentAsset
-------------------- evm_revert: 0x1ca0

✓ tokens balances are correct
-------------------- evm_revert: 0x1cbb

✓ #calculateBorrowValue
-------------------- evm_revert: 0x1cd6

✓ #getBorrowAmount
-------------------- evm_revert: 0x1cf1

✓ throws when userB wants to deposit
-------------------- evm_revert: 0x1d0c

✓ #withdraw (235ms)
debt token integration tests

-------------------- evm_revert: 0x1d27
✓ should #mint debt token to userB

-------------------- evm_revert: 0x1d42
✓ userB can #transfer debt (902ms)
should #burn debt token on repay

-------------------- evm_revert: 0x1d5d
✓ should #burn all debt when repay amountToBorrow and no interest apply (50ms)

-------------------- evm_revert: 0x1d8e
✓ should NOT #burn all debt when repay amount without interest (105ms)

-------------------- evm_revert: 0x1da9
✓ should #burn all debt token on full repay (77ms)

#transfer
-------------------- evm_revert: 0x1dc8

✓ throws when userA did not allow for transfer (168ms)
-------------------- evm_revert: 0x1de3

✓ throws when userB transfers debt to someone who has collateral in that asset (323ms)
-------------------- evm_revert: 0x1e08

✓ throws when userA become insolvent after debt transfer from userB (64ms)
-------------------- evm_revert: 0x1e37

✓ throws when amount exceeds allowance (182ms)
when userB borrows again

-------------------- evm_revert: 0x1e56
✓ #liquidity is zero

-------------------- evm_revert: 0x1e7d
✓ lens borrow data are correct

-------------------- evm_revert: 0x1eb2
✓ tokens balances are correct

-------------------- evm_revert: 0x1ee7
✓ there are no interests because no time passed

when a week passed interests should appear
when all interests goes to the protocol

-------------------- evm_revert: 0x1f1c
✓ #harvestProtocolFees (121ms)

-------------------- evm_revert: 0x1f51
✓ userA do not have interests

when protocol fees is 0%
-------------------- evm_revert: 0x1f74

✓ userA got interests
-------------------- evm_revert: 0x1f95

✓ accrueInterest() increases the total borrowAmount and deposits
-------------------- evm_revert: 0x1fb4

✓ total deposit increased by protocol interests
#repay

-------------------- evm_revert: 0x1fd3
✓ expect to repay all using exact amount (175ms)

-------------------- evm_revert: 0x1ff2
✓ expect to repay all using max uint256 amount (181ms)

-------------------- evm_revert: 0x200d
✓ expect to repay all providing higher amount than actual debt (179ms)

-------------------- evm_revert: 0x2028
✓ expect to repay part of debt (111ms)

#repayFor
-------------------- evm_revert: 0x2043

✓ anyone can repayFor(userB) if it is solvent (215ms)
when userB becomes insolvent

-------------------- evm_revert: 0x205e
✓ anyone can repayFor(userB) if it is insolvent (175ms)

#flashLiquidation
when flashLiquidation is done on solvent userB

-------------------- evm_revert: 0x2079
✓ expect to not change assets, debt and collateral tokens balances for userB

-------------------- evm_revert: 0x2096
✓ expect totalBorrowAmount, totalDeposits of assets should not change

when userB is NOT solvent
-------------------- evm_revert: 0x20b3

✓ ltv > liquidationThreshold
when flashLiquidation executed (interest ON)

-------------------- evm_revert: 0x20d0
✓ expect protocol got liquidation fees

-------------------- evm_revert: 0x20ed
✓ expect userB to be solvent, there is no debt (102ms)

-------------------- evm_revert: 0x2112
✓ expect userB to loose his collateral

-------------------- evm_revert: 0x2137
✓ expect userB to have borrowed asset
- expect liquidatorHelper to have some remaining quote token

-------------------- evm_revert: 0x215c
✓ expect userA earned fees on borrowed asset

-------------------- evm_revert: 0x2181
✓ expect interests to be applied

[1] when user A deposits currentAsset
[1] when user B deposit other asset as collateral

-------------------- evm_revert: 0x21a6
✓ silo shares are right before borrow

-------------------- evm_revert: 0x21cb
✓ userB has right LTV after #borrow (336ms)
test maximumLTV
when there is enough deposit

-------------------- evm_revert: 0x21dc
✓ throws when userB wants to borrow more that 100% (maximumLTV) (361ms)

-------------------- evm_revert: 0x21f9
✓ userB can borrow maximumLTV and stay solvent (133ms)

borrowFor(userA)
-------------------- evm_revert: 0x222c

✓ router can borrowFor(userB) (272ms)
-------------------- evm_revert: 0x224d

✓ throws when borrowFor() is done NOT by router
when userB borrows currentAsset

-------------------- evm_revert: 0x2272
✓ tokens balances are correct (39ms)

-------------------- evm_revert: 0x228d
✓ #calculateBorrowValue

-------------------- evm_revert: 0x22a8
✓ #getBorrowAmount

-------------------- evm_revert: 0x22c3
✓ throws when userB wants to deposit

-------------------- evm_revert: 0x22de
✓ #withdraw (235ms)
debt token integration tests

-------------------- evm_revert: 0x22f9
✓ should #mint debt token to userB

-------------------- evm_revert: 0x2314
✓ userB can #transfer debt (937ms)
should #burn debt token on repay

-------------------- evm_revert: 0x232f
✓ should #burn all debt when repay amountToBorrow and no interest apply (51ms)

-------------------- evm_revert: 0x2360
✓ should NOT #burn all debt when repay amount without interest (100ms)

-------------------- evm_revert: 0x237b
✓ should #burn all debt token on full repay (71ms)

#transfer
-------------------- evm_revert: 0x239a

✓ throws when userA did not allow for transfer (157ms)
-------------------- evm_revert: 0x23b5

✓ throws when userB transfers debt to someone who has collateral in that asset (320ms)
-------------------- evm_revert: 0x23da

✓ throws when userA become insolvent after debt transfer from userB (62ms)
-------------------- evm_revert: 0x2409

✓ throws when amount exceeds allowance (183ms)
when userB borrows again

-------------------- evm_revert: 0x2428
✓ #liquidity is zero

-------------------- evm_revert: 0x244f
✓ lens borrow data are correct

-------------------- evm_revert: 0x2484
✓ tokens balances are correct

-------------------- evm_revert: 0x24b9
✓ there are no interests because no time passed

when a week passed interests should appear
when all interests goes to the protocol

-------------------- evm_revert: 0x24ee
✓ #harvestProtocolFees (123ms)

-------------------- evm_revert: 0x2523
✓ userA do not have interests

when protocol fees is 0%
-------------------- evm_revert: 0x2546

✓ userA got interests
-------------------- evm_revert: 0x2567

✓ accrueInterest() increases the total borrowAmount and deposits
-------------------- evm_revert: 0x2586

✓ total deposit increased by protocol interests
#repay

-------------------- evm_revert: 0x25a5
✓ expect to repay all using exact amount (177ms)

-------------------- evm_revert: 0x25c4
✓ expect to repay all using max uint256 amount (175ms)

-------------------- evm_revert: 0x25df
✓ expect to repay all providing higher amount than actual debt (173ms)

-------------------- evm_revert: 0x25fa
✓ expect to repay part of debt (111ms)

#repayFor
-------------------- evm_revert: 0x2615

✓ anyone can repayFor(userB) if it is solvent (236ms)
when userB becomes insolvent

-------------------- evm_revert: 0x2630
✓ anyone can repayFor(userB) if it is insolvent (180ms)

#flashLiquidation
when flashLiquidation is done on solvent userB

-------------------- evm_revert: 0x264b
✓ expect to not change assets, debt and collateral tokens balances for userB

-------------------- evm_revert: 0x2668
✓ expect totalBorrowAmount, totalDeposits of assets should not change

when userB is NOT solvent
-------------------- evm_revert: 0x2685

✓ ltv > liquidationThreshold
when flashLiquidation executed (interest ON)

-------------------- evm_revert: 0x26a2
✓ expect protocol got liquidation fees

-------------------- evm_revert: 0x26bf
✓ expect userB to be solvent, there is no debt (101ms)

-------------------- evm_revert: 0x26e4
✓ expect userB to loose his collateral

-------------------- evm_revert: 0x2709
✓ expect userB to have borrowed asset
- expect liquidatorHelper to have some remaining quote token

-------------------- evm_revert: 0x272e
✓ expect userA earned fees on borrowed asset

-------------------- evm_revert: 0x2753
✓ expect interests to be applied

-------------------- evm_revert: 0x127c
SiloFactory
✓ #siloFactoryPing

SiloLens
#protocolFees
✓ expect to return correct protocolFees

#lensPing
✓ expect to return correct lensPing

#getModel
✓ expect to return correct getModel

when user deposit and borrow
✓ #liquidity
✓ #totalDeposits
✓ #collateralOnlyDeposits
✓ #totalBorrowAmount
✓ #borrowShare
✓ #totalBorrowShare
✓ #getBorrowAmount (47ms)
✓ #collateralBalanceOfUnderlying (50ms)
✓ #balanceOfUnderlying (78ms)
✓ #debtBalanceOfUnderlying
✓ #calculateCollateralValue (81ms)
✓ #calculateBorrowValue (68ms)
✓ #totalDepositsWithInterest (46ms)
✓ #totalBorrowAmountWithInterest (38ms)
✓ #getUtilization
✓ #borrowAPY
#depositAPY
✓ expect to return 0 when no deposit (131ms)
✓ expect to calculate APY (86ms)

LTV
✓ #getUserLTV (91ms)
✓ #getUserMaximumLTV (64ms)
✓ #getUserLiquidationThreshold (65ms)

#hasPosition
✓ expect to return FALSE for address(0) (158ms)
✓ expect to return FALSE if user not using Silo (329ms)
returns TRUE when user has at least one position
✓ [0] expect to return TRUE for 1,0,0,0,0,0 (152ms)
✓ [1] expect to return TRUE for 0,1,0,0,0,0 (197ms)
✓ [2] expect to return TRUE for 0,0,1,0,0,0 (205ms)
✓ [3] expect to return TRUE for 0,0,0,1,0,0 (213ms)
✓ [4] expect to return TRUE for 0,0,0,0,1,0 (218ms)
✓ [5] expect to return TRUE for 0,0,0,0,0,1 (211ms)

SiloRepository
✓ #defaultAssetConfig returns default values (62ms)
✓ isSilo()
✓ getMaximumLTV()
✓ getLiquidationThreshold()
when deployed
✓ #bridgeAssets are setup
✓ #siloLatestVersion is 1st version
✓ #siloDefaultVersion is 1st version
✓ expect siloFactory(0) returns empty address
✓ expect silo factory is not empty for the default version
✓ #siloFactory returns address
✓ fees are 0
✓ #siloRepositoryPing

#setFees
throws when any fee is >= than 100%
✓ check for entryFee
✓ check for protocolShareFee
✓ check for protocolLiquidationFee

when fees updated
✓ expect to saved fees

#setNotificationReceiver
✓ expect to not have NotificationReceiver set
✓ throw when called NOT by owner
with NotificationReceiver set
✓ expect to have NotificationReceiver set

#setAssetConfig
✓ throws when ltv is zero
✓ throws when ltv == liquidationThreshold
✓ throws when ltv > liquidationThreshold
✓ throws when liquidationThreshold >= 100%
✓ throws when silo empty
✓ throws on empty interestRateModel
✓ throws when invalid interestRateModel
✓ throws when asset empty
✓ emits AssetConfigUpdate event (41ms)
when config set
✓ expect to have valid values in storage

setDefaultInterestRateModel()
✓ expect interest rate model is set in default config
✓ expect default interest rate model is set for random silo

#setDefaultMaximumLTV
✓ expect to set new MaximumLTV
✓ throws when ltv is zero
✓ throws when ltv == liquidationThreshold
✓ throws when ltv > liquidationThreshold

#setDefaultLiquidationThreshold
✓ expect to set new value
✓ throws when ltv == liquidationThreshold
✓ throws when ltv > liquidationThreshold
✓ throws when liquidationThreshold >= 100%

#setPriceProvidersRepository
✓ expect to set repo address (88ms)
✓ throws on invalid address
✓ throws on empty address

#setRouter
✓ expect to set repo address
✓ throws on invalid address
✓ throws on empty address

#addBridgeAsset
✓ expect to revert when called NOT by owner
✓ expect to revert when price provider is not ready for asset
✓ expect to revert when empty asset
✓ emits BridgePool event when silo already exists for asset (228ms)
when silo for newBridgeAsset already exists
✓ expect to add bridge asset and set bridge pool (90ms)

when BridgePool exists
when regular Silo exists for asset X
✓ throws when adding asset X as a bridge

when new bridge asset added
✓ expect to have newAsset in bridgeAssets
✓ expect to revert when try to add same asset again

#removeBridgeAsset
✓ expect to revert when called NOT by owner
✓ expect to revert when removing main bridge asset
✓ expect to revert when try to remove empty asset
with 3 bridge assets

✓ expect to revert when asset does not exists
when removed
✓ asset not exists as bridge asset
✓ asset exists as removed asset

when silo for removing asset exists (it is bridge pool)
✓ expect to reset bridge pool on removal asset for existing silo(asset) (86ms)
✓ does not reset bridgePool on removal asset that is not main bridgePool asset (94ms)

#newSilo
✓ throws when price provider not setup (40ms)
✓ throws if silo version does not exist (158ms)
✓ expect to create silo using default version (0) (174ms)
✓ emits BridgePool when created silo for bridge asset (150ms)
when Silo created
✓ expect silo(asset) returns silo address
✓ expect siloReverse(siloAddress) returns asset
✓ expect isSilo(siloAddress) returns true

with new silo version (not default)
✓ expect to create silo for OLD version (133ms)
✓ expect to create silo for NEW version (187ms)

#replaceSilo
✓ expect to throw when there is nothing to replace (silo not exists)
when silo for asset exists
✓ expect to throw when called not by owner
when replaced
✓ expect to replace silo
✓ expect siloReverse(newSilo) returns asset
✓ expect siloReverse(oldSilo) still returns asset
✓ expect isSilo(oldSilo) returns true
✓ expect isSilo(newSilo) returns true

#registerSiloVersion
✓ throws when called NOT by owner
✓ throws when empty factory
✓ throws when invalid factory
✓ expect to emit events (73ms)
when silo version registered as NOT default version
✓ siloDefaultVersion NOT change

when silo version registered as default version
✓ siloVersion is valid
✓ expect siloFactory(1) returns old version
✓ expect siloFactory(2) returns new version

#unregisterSiloVersion
✓ throws when NOT and owner
✓ throws when unregistering default version
✓ throws when unregistering nonexistent version
✓ emits event (92ms)

#setDefaultSiloVersion
✓ throw when NOT and owner
✓ throws when there is no factory for selected version
✓ expect to emit SiloDefaultVersion
when default version set
✓ expect to have valid version

#ensureCanCreateSiloFor
with just one bridge asset
✓ throws when asset is a bridge

with many bridge assets
✓ throws when silo already exists for asset (135ms)
✓ allows to create when asset is a bridge asset
✓ allows to create when asset is NOT a bridge asset
when asset is a bridge
✓ throws when bridge pool already exists (154ms)
✓ throws when bridge pool for other bridge asset already exists (145ms)

SiloRouter unit tests
when deployed
✓ wrappedNativeToken is set

eth refunds
✓ refunds remaining eth if the user sent eth
✓ does not refund remaining eth if the user did not sent eth (40ms)

execute single action
✓ Action.Deposit (222ms)
✓ Action.Withdraw (156ms)
✓ Action.Borrow (153ms)
✓ Action.Repay (157ms)
using ETH
Action.Deposit ETH
✓ expect to have correct ETH balance

Action.Withdraw ETH
✓ expect to have correct ETH balance

Action.Borrow ETH
✓ expect to have correct ETH balance

Action.Repay ETH
✓ expect to have correct ETH balance

execute bundle
✓ Action.Deposit => Action.Borrow (359ms)
✓ Action.Withdraw => Action.Action.Repay (355ms)
✓ Action.Deposit => Action.Borrow => Action.Withdraw => Action.Withdraw (648ms)
✓ Action.Deposit => Action.Deposit => Action.Deposit => Action.Borrow (784ms)
using ETH
Action.Deposit ETH => Action.Deposit ETH
✓ expect to have correct ETH balance

TokensFactory
#factory should create all types of tokens
#createShareCollateralToken
✓ creates token
✓ silo is token deployer

#createShareDebtToken
✓ creates token
✓ silo is token deployer

GuardedLaunch
after deployment
✓ #globalToggle
✓ #defaultMaxLiquidity

#getMaxSiloDepositsValue
after deployment
Test case 0
✓ expect correct max deposits

Test case 1
✓ expect correct max deposits

Test case 2
✓ expect correct max deposits

Test case 3
✓ expect correct max deposits

#toggleLimitedMaxLiquidity
Test case 0
✓ expects no limit

Test case 1
✓ expects no limit

Test case 2
✓ expects no limit

Test case 3
✓ expects no limit

#setDefaultSiloMaxDepositsLimit
Test case 0
✓ expects new deafult limit

Test case 1
✓ expects new deafult limit

Test case 2
✓ expects new deafult limit

Test case 3
✓ expects new deafult limit

#setSiloMaxDepositsLimit
Test case 0
✓ expects new limit for a Silo

Test case 1
✓ expects new limit for a Silo

Test case 2
✓ expects new limit for a Silo

Test case 3
✓ expects new limit for a Silo

#isSiloPaused
after deployment
Test case 0
✓ expects Silo to be unpaused

Test case 1
✓ expects Silo to be unpaused

Test case 2
✓ expects Silo to be unpaused

Test case 3
✓ expects Silo to be unpaused

#setGlobalPause
Test case 0
✓ expects Silo to be paused

Test case 1
✓ expects Silo to be paused

Test case 2
✓ expects Silo to be paused

Test case 3
✓ expects Silo to be paused

global unpause Silo
Test case 0
✓ expects Silo to be unpaused

Test case 1
✓ expects Silo to be unpaused

Test case 2
✓ expects Silo to be unpaused

Test case 3
✓ expects Silo to be unpaused

#setSiloPause
pause Silo
Test case 0
✓ expects Silo to be paused

Test case 1
✓ expects Silo to be paused

Test case 2
✓ expects Silo to be paused

Test case 3
✓ expects Silo to be paused

unpause Silo
Test case 0
✓ expects Silo to be unpaused

Test case 1
✓ expects Silo to be unpaused

Test case 2
✓ expects Silo to be unpaused

Test case 3
✓ expects Silo to be unpaused

pause Asset
Test case 0
✓ expects asset to be paused

Test case 1
✓ expects asset to be paused

Test case 2
✓ expects asset to be paused

Test case 3
✓ expects asset to be paused

unpause Asset
Test case 0
✓ expects Asset to be unpaused

Test case 1
✓ expects Asset to be unpaused

Test case 2
✓ expects Asset to be unpaused

Test case 3
✓ expects Asset to be unpaused

ShareCollateralToken
#mint
✓ expect balance
with NotificationReceiver set
✓ expect balance

#burn
✓ expect balance

#transfer
successful transfer
✓ expect correct balances

throws when
✓ userA transfers collateral to someone who has debt in that asset (61ms)
✓ userA become unsolvent after transfer (64ms)

#transferFrom
successful trasnfer
with misconfigured NotificationReceiver
✓ expect correct balances

with properly configured NotificationReceiver
✓ expect NotificationSent event with value true (204ms)

throws when
✓ not enough allowance from userA (91ms)
✓ userC transfers userAs asset deposit to userB who has debt in that asset (63ms)
✓ userA become unsolvent after transferFrom to userB (67ms)

ShareDebtToken
#mint
✓ expect balance
with NotificationReceiver set
✓ expect balance

#burn
✓ expect balance

#transfer debt
✓ expect correct balances
throws when
✓ recipient did not allow for transfer (65ms)
✓ userA transfers debt to someone who has collateral in that asset (134ms)
✓ userB become unsolvent after debt transfer from userA (201ms)

#transferFrom of debt
✓ expect correct balances
throws when
✓ not enough allowance from userA to userC (who transfers) (95ms)
✓ not enough receive allowance from userB to userA (71ms)
✓ userC transfers userAs debt to userB who has collateral in that asset (150ms)
✓ userB become insolvent after transferFrom debt from userA (174ms)

#setReceiveApproval
✓ expect to set receive approval from random address
✓ throws when receive approval sender is 0x0

#decreaseReceiveAllowance
✓ expect to decrease allowance by 25%
✓ reverts if decreasing receive allowance results in an underflow

#increaseReceiveAllowance
✓ expect to increase allowance x3
✓ reverts if increasing receive allowance results in an overflow

ShareToken
when share token isShareCollateralToken
when deployed
✓ expect to have name set
✓ expect to have symbol set
✓ expect to have silo set
✓ expect to have asset set

#mint
✓ throws when mint by NOT an owner
✓ owner should mint tokens (39ms)
✓ should emit event on mint

#burn
✓ throws when burn NOT by owner
✓ owner should burn tokens (53ms)
✓ should emit event on burn

when share token is ShareDebtToken
when deployed
✓ expect to have name set
✓ expect to have symbol set
✓ expect to have silo set
✓ expect to have asset set

#mint
✓ throws when mint by NOT an owner
✓ owner should mint tokens (40ms)
✓ should emit event on mint

#burn
✓ throws when burn NOT by owner
✓ owner should burn tokens (50ms)
✓ should emit event on burn

4764 passing (6m)
17 pending

Done in 406.79s.

Code Coverage

Initial Audit:
Quantstamp usually recommends developers increase the branch coverage to 90% and above before a project goes live, in order to avoid hidden functional bugs that might
not be easy to spot during the development phase. For branch code coverage, the current targeted files by the audit achieve a lower score that can be improved further.
Reaudit update: Coverage could not be generated due to errors.
Final Reaudit: The final repository does not contain a test folder.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 96.41 83.18 94.85 96.52

BaseSilo.sol 99.46 81.67 100 99.46 395

Error.sol 100 100 100 100

InterestRateModel.sol 96.55 92.86 91.67 96.43 162,230

PriceProvidersRepository.sol 92.86 81.82 84.62 88.89 38,39,106

File % Stmts % Branch % Funcs % Lines Uncovered Lines

Silo.sol 100 100 100 100

SiloFactory.sol 25 0 50 25 18,20,21

SiloLens.sol 92.19 33.33 96.15 95.16 311,312,314

SiloRepository.sol 96.83 90.7 96.77 96.72 117,122,123,232

SiloRouter.sol 95 75 85.71 94.59 80,118

TokensFactory.sol 100 100 100 100

contracts/governance/ 21.82 3.33 48.15 22.22

SiloGovernanceToken.sol 60 100 60 60 27,51

SiloGovernor.sol 72.73 100 75 72.73 113,141,151

SiloSnapshotWrapper.sol 0 0 0 0 … 42,43,52,57

TreasuryVester.sol 3.7 4.17 25 3.85 … 6,98,99,102

contracts/interfaces/ 100 100 100 100

IBaseSilo.sol 100 100 100 100

IERC20R.sol 100 100 100 100

IFlashLiquidationReceiver.sol 100 100 100 100

IGuardedLaunch.sol 100 100 100 100

IInterestRateModel.sol 100 100 100 100

INotificationReceiver.sol 100 100 100 100

IPriceProvider.sol 100 100 100 100

IPriceProvidersRepository.sol 100 100 100 100

IShareToken.sol 100 100 100 100

ISilo.sol 100 100 100 100

ISiloFactory.sol 100 100 100 100

ISiloRepository.sol 100 100 100 100

ISwapper.sol 100 100 100 100

ITokensFactory.sol 100 100 100 100

IWrappedNativeToken.sol 100 100 100 100

contracts/lib/ 95.8 90.32 100 96.45

EasyMath.sol 100 100 100 100

ModelStats.sol 66.67 50 100 100

PRBMathCommon.sol 100 98.51 100 100

PRBMathSD59x18.sol 61.54 40 100 66.67 42,72,73,77,78

Ping.sol 90 83.33 100 100

Solvency.sol 94.37 71.43 100 96.97 317,345

TokenSymbol.sol 100 100 100 100

contracts/liquidation/ 77.19 58.33 70.37 79.28

BalancerV2Swap.sol 72.22 50 71.43 72.22 37,38,75,79,83

LiquidationHelper.sol 80.77 60.71 75 84 … ,93,150,187

UniswapV3Swap.sol 66.67 50 62.5 66.67 … 5,66,98,109

contracts/mock/ 75 66.67 70.59 73.68

Forwarder.sol 100 100 100 100

MockERC20.sol 80 100 75 75 16

MockLiquidationHelper.sol 100 100 100 100

MockPriceFetchersRepository.sol 0 0 0 0 15,20,24,28

MockSiloGovernor.sol 100 100 100 100

TestTokenSymbol.sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/priceProviders/ 80 75 66.67 83.33

PriceProvider.sol 80 75 66.67 83.33 37

contracts/priceProviders/balancerV2/ 96.36 85.71 100 97.87

BalancerV2PriceProvider.sol 96.36 85.71 100 97.87 213

contracts/priceProviders/uniswapV3/ 78.46 66.67 65 80.65

TwoStepOwnable.sol 26.67 0 22.22 25 … 68,69,76,83

UniswapV3PriceProvider.sol 94 80 100 100

contracts/utils/ 89.66 81.82 87.8 90.22

ERC20R.sol 100 75 100 100

GuardedLaunch.sol 100 100 100 100

Managable.sol 100 62.5 100 100

ShareCollateralToken.sol 100 100 100 100

ShareDebtToken.sol 100 100 100 100

ShareToken.sol 100 100 100 100

TwoStepOwnable.sol 40 33.33 44.44 43.75 … 76,77,78,92

All files 89.09 78.64 84.84 89.32

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

95998c708ca730ad17a740d12580e6e8499248e136e2ae7e040bca801b7ca897 ./contracts/BaseSilo.sol

5af579ca0bb8f7e1af427d4ee34cf60ad45b69ca055b1cc7771fb8504b1df753 ./contracts/SiloLens.sol

6b77f13f4cf726a1b83e81e41d1d45358786e4f956cfe19d7c3acdd91f276888 ./contracts/Error.sol

7e0d7b9543cea347ce116a5202bd5904b33906bd1cdaf2503ff5448e8825c137 ./contracts/InterestRateModel.sol

a1712d2f20bad4c2ddf6573bc4a9cff5be61a4aae420000a7c79b931ae2a4fd3 ./contracts/SiloFactory.sol

1d36412c302e23311ba9378f2a999b18fc5de168151493cb6b94032e98b5322b ./contracts/TokensFactory.sol

7fad817378ed28945217a178d4bc77be08c8935e221ec399fbb16ca91467123c ./contracts/PriceProvidersRepository.sol

637bfa0ab1537140aa5879bc031faae7cb5578fccff6e70040eb76ba63afefb7 ./contracts/SiloRepository.sol

ea5263b309b5a552a790e66bc2119a0826dc62dc18598440192bec060580bf5b ./contracts/Silo.sol

d54d31b0b2438b557f18bed1a1b57b2d1184674b771102b5ce7c1d76b618da34 ./contracts/SiloRouter.sol

de98a7a26587eea251fd8bef24a52bac3e373e2859d542bd14eda97984af2fb3 ./contracts/interfaces/IPriceProvider.sol

047b4735a6a6cc60ab0d6cae7794c9444d87ad5687bc718e1a011b0ae844606d ./contracts/interfaces/ITokensFactory.sol

17a30a4284973cfece06b03591188815bb66b92c79fb1eb6359ff8fcf313d5b1 ./contracts/interfaces/ISiloFactory.sol

14b3c6f52d35ca18b2f1ff876c5e74d15e5ba7b70e01d605baaf0b008a42386a ./contracts/interfaces/IBaseSilo.sol

1ceea4102e8104d2a2ce6f2cbee33aae2f80d1f2100b2f44d50ed749f00834ec ./contracts/interfaces/ISwapper.sol

6680d6110eee287fec4d3dc7b0972adf3937e0866ff509abda3d31d3fe868bb3 ./contracts/interfaces/INotificationReceiver.sol

27524d73f18a0ab38f8909aae9c53b970f915199b4fd0f02f5c9d5263551c201 ./contracts/interfaces/ISilo.sol

5a7d80227dddb4a61fcc4207f842ce63edd93ea0113067299ea7233a4fc22ae7 ./contracts/interfaces/IERC20R.sol

944b0195011f61cef63ac572ff50c8f8d1b1222fcb3c6be39b16d6926ccfa1f2 ./contracts/interfaces/IShareToken.sol

7f2f23cc49df2cda649d7f95b487de6090df366b91279abf8f047d4b57a38dc7 ./contracts/interfaces/IWrappedNativeToken.sol

b2d7a77a5f0bcc5fcf8b3eb06a5995ae72076bcb26a74e3174640f91d72896f1 ./contracts/interfaces/IPriceProvidersRepository.sol

1596843103d3831905ea3cea0d92e977cff6602b37cd3af6a8adedfb3651da5f ./contracts/interfaces/ISiloRepository.sol

0b7f5150822daf384f52e3223484af1bc9da2d2139ffa31e8f6c4be447474734 ./contracts/interfaces/IGuardedLaunch.sol

3d9ac9cea947c2e505f5c72688fdcbad1dffcf8ed9aa4fa78e642b98b713a0a9 ./contracts/interfaces/IInterestRateModel.sol

b1ef3e15efeb41b2f9ec885ec11747f0494b994be1a322fd746b089671ac8fe0 ./contracts/utils/GuardedLaunch.sol

86edfc47938af9aefc034973923e296f3d846ed1cf3d379ce6d9910c52a5bbcc ./contracts/utils/ShareCollateralToken.sol

4ea1540f14d3d1d77132b96fa7538fa398cbdab04bd435ea17f5870d01625fc7 ./contracts/utils/ShareDebtToken.sol

80aa4d19515112dfbe241f54655ceb3e86bd8c16bd9b8f2ef6f576cae4d0df28 ./contracts/utils/Managable.sol

86c038f9812be9ed96c9f7149e63b93ebe0530487c90acf5a51d21029af7a707 ./contracts/utils/ShareToken.sol

471cd799d98b153ac83e17378129ff08deb78283dbde16d0d2a70a3c66c41f5f ./contracts/utils/TwoStepOwnable.sol

43b0dc0965ed48e09767b3e4aa5492dc38f0312343ed0a31518ed59cba43422d ./contracts/utils/ERC20R.sol

8b5b262aae8a6a694675799eb7f1aaaf0e88f9c46ae2ec70dce664e2a10534a8 ./contracts/mock/MockSiloGovernor.sol

8431b80a5ffb2b11b13702de3cafb644b7e22e6e10119ee1979781d576c14de0 ./contracts/mock/Forwarder.sol

04b207c6257e306d8004ebc88cb573f0bcb76862c7f7306a47ad1809915c59da ./contracts/mock/MockPriceFetchersRepository.sol

1b9336c61db1b16e16644918e113ae554e40e901056d9d76d98c5f583a1fca50 ./contracts/mock/MockLiquidationHelper.sol

114b63b53e132f75dfa52493b1c93b264286b2a91dcdd530d52098e1c9e3a473 ./contracts/mock/TestTokenSymbol.sol

4c76500bb82c2569b6894cc441cfe5f13d11ed4afce268eb39c7a877c3c22ef1 ./contracts/mock/MockERC20.sol

ddddb175f5a57dd49614d308b0bf2b9901f5444d2673cc0dc1693274f87b432a ./contracts/lib/PRBMathSD59x18.sol

c435e569b2bdf9e862786552bd2a272118614f420ba6d520608cd72f79109ae9 ./contracts/lib/ModelStats.sol

600acc4dee6f85ff5c187159f5e6ec18b991de8df84da11615c68d6bd1706622 ./contracts/lib/PRBMathCommon.sol

e79a4d1aab098b2a4210ad3478c50b133c8aa665c8c148a5435fe4cbbd13c4f3 ./contracts/lib/Solvency.sol

eba7dd8c38c3f15145582527f4ec6f21845e760b51335bded945983bc4561641 ./contracts/lib/Ping.sol

9d072017a41c43bfb4389357665ae53cfde8a707397fab69c5a280d7dc9906a3 ./contracts/lib/TokenSymbol.sol

cede0685c50e09da38091c8d63d800dcb8a0023ece5fcee5416b369a9ae41ad7 ./contracts/lib/EasyMath.sol

bd8f04a14bc6adcf5ed7a628cdf32feb3d63128d3dd7c281b6bdd18d0803bec7 ./contracts/governance/SiloGovernanceToken.sol

3b7531f754d56e0a5a267ffd133f6eda592e1a2916eda1eb776a107661bfd0a6 ./contracts/governance/SiloGovernor.sol

19b250c00bb6b1a1f7bae02286f04cf48ba8123fdbbaeec43eeb4d4c98a96aba ./contracts/priceProviders/PriceProvider.sol

ce8f4e4a92715a7d7e56aa04db1c98514def5a42eaebb5b4b2d01ba20284f025 ./contracts/priceProviders/uniswapV3/UniswapV3PriceProvider.sol

192d4baa971aa3ad3d9c9cec016b35f227bd557fd2542746f667d385c1e1a29a ./contracts/priceProviders/uniswapV3/TwoStepOwnable.sol

bcd942810a06a6a064dd23c9477f258d14327f76023f7eec3f35fa8d241313fb ./contracts/priceProviders/balancerV2/BalancerV2PriceProvider.sol

Tests

20b4c1b0cf75c9deee7969dfeb6f80a5d373bf69e9093ddfa0ed6b34fddf3339 ./test/InterestRateModel.unit.test.ts

a2c9a6fda2cef370a2a495b3f7a5d694e22fe052d2f23ba9f4c59c49e8dcdbfc ./test/SiloLens.unit.test.ts

144edb49a43e1de7078eee7d32eed116cb396b077369940ef0b7f2d352145e4b ./test/SiloRouter.unit.test.ts

039480fd26aaa03fcc6f9282b22bcfd8410fad2af7486881575058b3021716c0 ./test/TokensFactory.unit.test.ts

1d334ead62f99cc3cbf60ac7a9d89061ed2e9fcf4f95a6fc0edae6db68cf1fa3 ./test/Silo.unit.test.ts

6efd18dd973ea959638316838fd3fe3a4d56b07a3742e1035d38225bda83bd31 ./test/SiloScenarios.test.ts

fd0d53cdb874794cd70e0b1bb5e3efe575869f92a62852686e35dbeae4da0be8 ./test/SiloFactory.unit.test.ts

a1f55c550f9c4444d3a45e9ba85003e7e5f612160f07551f70460d5bdb1a81a3 ./test/deployments.integration.test.ts

829d94fdf20204399a702b53c68e4da626ccd25ff185d9085fd84baf31bcfe76 ./test/PriceProvidersRepository.unit.test.ts

dac3441f6b7c4b7e9e3731a79470695eb25dc756f53f7d27fe1ce8a08543f63b ./test/BaseSilo.test.ts

4544ebbecde9bfc102002e748677f9528da57288ecc6be856797ea8e81599fcf ./test/SiloRepository.unit.test.ts

245d97a008fcd22c061f09540c599b5322958d65c8c8be11191bf33a6758bb35 ./test/SiloRouter.integration.test.ts

79fd05b54490d275d489b71726535d27e9889a224f7b0c930b35bed510446b76 ./test/helpers/mocks.ts

97888bd820ffe59b8c8b88f039860c603ed28b07dad344ee50541d4bf8fcf3e5 ./test/helpers/utils.ts

104d36346081389f8757e5b9f57c5ac1a307a3b1fb22ecc73385ee1468cefb35 ./test/helpers/index.ts

538214c18ca937e12576a10ce253fa35c3835dfface7da3c17b693e7cf09a557 ./test/helpers/time.ts

4a0a0d98c9533abfb3cc98346e6ed90c1a1a5ddde16fcf21815a451c8f556f1e ./test/helpers/intelliJRequirements.ts

f04b2439f62e92833560aae1833a5b95d5f9bec13b2eb2b2572648062ddac6b3 ./test/helpers/assertions.ts

52e503c2719e84c332e11ba3168b781aef2fd88055875e6fd0811deb3dcd522a ./test/helpers/erc20.ts

daa882bad515903899b82814abf2f9a823311930ad3ccccc4537068ad437e5eb ./test/helpers/constants/rinkeby.ts

36e47bebbb69f4825b42777ec7193db66399d41eecf04ae1ec4dcf344cb905b7 ./test/helpers/constants/eth.ts

929d9a678a82be2b0f3bd188558e72284fd703d217d76bd9b6aa41e1a29825af ./test/helpers/constants/polygon.ts

b5a1d1da98dbd8d5395819b86b6e9af8af161bd908bce63792ecc7b493eb4375 ./test/liquidation/LiquidationHelper.test.ts

db699f7fbc14d43222ea1f1c8c49cc3967c0404fd937784e65af04f9ff652e9f ./test/utils/ShareDebtToken.unit.test.ts

83505d2477011c4bd3e1c1e6bcbbcff396d45f7c7a910f3274620e090e01430b ./test/utils/ShareCollateralToken.unit.test.ts

6aa565f8e7c70afbffd10a8621dc9ac02f4488a23e62bb4f052818948a91064d ./test/utils/UniswapV3Swap.test.ts

e8787290a7401f421e6d2a5184831b77b01fd4f7999d7f8d74b550e56134f61a ./test/utils/GuardedLaunch.unit.test.ts

6aa565f8e7c70afbffd10a8621dc9ac02f4488a23e62bb4f052818948a91064d ./test/utils/BalancerV2Swap.test.ts

85ab991ad04cdefcb8f3b071a9ed2345ea2d58538d2ea39d0f258c8b30a6de23 ./test/utils/ShareToken.unit.test.ts

b9438a6ad0c79fa7dbfc8557f0453c173f16dec5be779eab1ee86f13322503a2 ./test/utils/ERC20R.unit.test.ts

d889c1074d4a3686e3ec39a304fb32ebe5bb84be2df331d19fa83f4e2ad37cd7 ./test/utils/common/ISwapper.test.ts

5aa8aab52fada732ce9bf57f9fd9793c9065b337bcb34c1c3d019d8d69fc0e84 ./test/governance/SiloSnapshotWrapper.intergarion.test.ts

e9455b92a314d77ca02cd32c4c405cb71b5777b853a318832b11ad59789f472d ./test/governance/SiloGovernor.unit.test.ts

a900c0c2aa3ed8a41360cbab402de41f0b05cbbfec1c24d41900838110b27798 ./test/governance/TreasuryVester.integration.test.ts

74e213f9e50919c27425711659d9eeec52df0dc2124fa08cb8e178b83d443192 ./test/governance/SiloGovernanceToken.unit.test.ts

4a5056e438be959447e22a116e7a676f19a71e606a028714a829c99871705822 ./test/priceProviders/UniswapV3.unit.test.ts

6926b3ceb75b066126e1d6ab5ae524b0a2f70a6ef4f5b1edd0dc07b73e34a692 ./test/priceProviders/common.integration.test.ts

eda7ad84a6f71a789be21b78d638d963f63a18915da60f878a9cb7915ef2ceb6 ./test/priceProviders/BalancerV2.unit.test.ts

Changelog

• 2025-1-6 - Initial report

• 2025-1-27 - Reaudit update(4c9e45c)

• 2025-2-3 - Final reaudit (4be2bdd)

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the
adoption of this exponentially growingtechnology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract
security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum
Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our
commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes
no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.
These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
cautionwhereappropriate.FORAVOIDANCEOFDOUBT,THEREPORT,ITSCONTENT,ACCESS,AND/ORUSAGETHEREOF,INCLUDINGANYASSOCIATEDSERVICESOR
MATERIALS,SHALLNOTBECONSIDEREDORRELIEDUPONASANYFORMOFFINANCIAL,INVESTMENT,TAX,LEGAL,REGULATORY,OROTHERADVICE.

Silo 2 Audit

	Type Auditors
	Documentation QualityHigh
	Source Code
	2.Run Slither from the project directory: slither .
	Status: Mitigated
	•_repay execute a transfer before setting the final
	Status: Fixed

	QSP-3 Adding New Bridge Asset May Fail
	Status: Fixed

	QSP-4 Adding New Bridge Asset Do Not Sync the Brid
	Status: Fixed

	QSP-5 Cannot Add Previously Removed Bridge Asset
	Status: Fixed
	Status: Acknowledged

	QSP-7 Confusion In Return Value
	Status: Acknowledged

	QSP-8 Unlocked Pragma
	Status: Acknowledged

	QSP-9 Unnecessary Public Visibility for State Vari
	Status: Fixed

	QSP-10 Use of Hard-Coded Values
	Status: Fixed

	QSP-11 Clone-and-Own
	Status: Acknowledged

	QSP-12 Allowance Double-Spend Exploit
	Status: Mitigated
	1.After some time, Alice decides to change from N to

	QSP-13 Ownership Can Be Renounced
	Status: Acknowledged
	Status: Acknowledged

	Automated Analyses
	Slither did not return any significant result.
	2.SiloSnapshotWrapper implementation inherits from E
	6.Gas optimizations: 1.1. Declare array length used

	Test Results
	Test Suite Results
	Contracts
	Tests

	Changelog
	•2025-1-6 - Initial report

